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Abstract: We present a scalar, time-dependent, plane-wave model for stimulated Brillouin
scattering (SBS) within a fiber amplifier having a seed linewidth comparable to, or greater than,
the Brillouin frequency shift. The broadband model introduces the existence of a backward
anti-Stokes wave, in addition to the Stokes wave present in the narrowband model. The model
also incorporates a Fresnel reflection within the fiber or at the exit face. In the absence of Fresnel
reflections, the SBS threshold increases linearly with seed linewidth, up to linewidths of at
least three times the Brillouin frequency shift. In the presence of Fresnel reflections that seed
the Stokes wave, the threshold increases sub-linearly, which agrees with previously reported
experimental results. For non-zero reflections and modulation formats with very compact spectra,
the threshold can decrease with bandwidth in the region 16–24 GHz due to seeding of the Stokes
wave.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

High-power fiber amplifiers with compact spectra are advantageous for both coherent combining
[1] and spectral combining [2,3]. Current narrow-linewidth, high-power, nearly-fundamental-
mode fiber amplifiers operate near the threshold for stimulated Brillouin scattering (SBS).
Recent techniques for raising the threshold include developing fibers with low nonlinearity [4,5],
engineering seed spectra [6–8], and synchronous amplitude and phase modulation of the seed
[9]. Scaling the power to multiple kilowatts from a single aperture is accomplished by using
a seed linewidth that is 10’s of GHz, i.e., 100’s of times larger than the ∼100 MHz Brillouin
linewidth. In this regime, models that incorporate the usual assumption that the laser linewidth
is small compared to the Brillouin frequency shift (hereafter “Brillouin frequency”), which is
16 GHz at 1.06 µm in fused silica, are not necessarily valid. Here we present a scalar broadband
model for laser linewidths comparable to, or larger than, the Brillouin frequency, i.e., for acoustic
waves where the modulation bandwidth exceeds the carrier frequency. This model reveals the
physics of why an important feature of the narrowband model (linear scaling of threshold with
seed bandwidth) holds beyond the expected range of validity.

The model also incorporates Fresnel reflections from splices and endcaps. We use the model
to calculate the SBS threshold as a function of seed bandwidth for several phase modulation
formats, and various endcap reflectivities.

While the acoustic wave equation is second order in time and space, most treatments of SBS
reduce it to a first order ordinary differential equation in time, by using the slowly varying
amplitude (SVA) approximation and by considering the acoustic wave to be stationary with
respect to the optical waves [10]. In our paper, we also consider the acoustic wave to be stationary,
but do not use the SVA approximation.

Our paper is an extension of, and a variation on, several previous broadband treatments. In Ref.
[11], the SBS threshold is calculated for a passive fiber for several phase modulation formats
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(sinusoidal, pseudo-random bit sequence (PRBS), Lorentzian white noise, and sinc2 white noise)
at bandwidths up to one third of the Brillouin frequency. In Ref. [12[, the threshold energy is
calculated for a passive fiber excited by 30-ns single- and multi-longitudinal mode pulses with
spectra that average to a smooth Gaussian, at linewidths up to 1.1× the Brillouin frequency. In
Ref. [13] and [14], the analysis is extended to a field with a constant amplitude and periodic
modulation where the spectra consist of discrete lines, and the results compared with experiment.
The pure sine wave modulation raises the laser linewidth up to 0.75× the Brillouin frequency,
and the PRBS modulation rate extends to 0.2× the Brillouin frequency.

Our approach differs from the above in that it treats a high-power amplifier with an active
section and a passive delivery fiber, and we transform the second order acoustic wave equations
into two first order equations representing waves traveling in opposite directions. When the seed
spectral width is comparable to the Brillouin frequency, a backward acoustic wave is generated,
which generates an anti-Stokes peak in the backward optical wave. Our approach yields physical
insights into why narrow-band models work beyond expectations. For example, our more rigorous
approach shows that, in the absence of feedback via Fresnel reflection, the SBS threshold scales
linearly with seed bandwidth, at least up to three times the Brillouin frequency.

At the spontaneous level and at room temperature, based on conservation of momentum and
energy alone, we could expect to see both Stokes and anti-Stokes photons generated, kT being
∼400× larger than the phonon energy. At the stimulated level, a forward-going acoustic wave
builds up because forward-going phonons are generated in the Stokes process. A backward-going
acoustic wave usually does not build up because such phonons are absorbed in the anti-Stokes
process. A backward acoustic wave can however be generated in the case of broadband SBS.
This can be seen from an ω,k diagram for the coupling of a forward laser wave (L), a backward
Stokes wave (S), and a forward acoustic wave (Fig. 1). The acoustic velocity va is exaggerated
for clarity, but conservation of momentum and energy are respected in the diagram. The green
and red rectangles on the vertical axis illustrate the idealized case of square spectra for the laser
and Stokes waves. The laser/Stokes difference frequencies and wavevectors occupy the region
shown by the blue oval.

Fig. 1. Frequency-wavenumber (ω,k) diagrams for the optical and acoustic waves in the
medium. The acoustic velocity is exaggerated for clarity. The spectrum of the forward optical
wave is shown in green, the spectrum of the Stokes wave is shown in red. (a) illustrates the
case of a laser spectral width equal to the Brillouin frequency. (b) illustrates the case of a
laser spectral width equal to twice the Brillouin frequency, generating an anti-Stokes wave.
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For the case where the laser spectral width, ∆ωL equals the Brillouin frequency, ωB, the
difference frequencies span the range from 0 to 2ωB (Fig. 1(a)). Through the electrostrictive
effect, phonons will build up in the region that is both inside the blue oval and close to the line
ω = vak, given that the Brillouin linewidth is small compared to the Brillouin frequency.

For the case ∆ωL = 2ωB, the difference frequencies span the range from −ωB to 3ωB, resulting
in the generation of a second acoustic wave which propagates in the –k direction (Fig. 1(b)).
Scattering from the backward acoustic wave generates a backward-propagating anti-Stokes wave
at ωA (purple dot).

In the broadband case, while the center frequencies still obey the usual relation ωS<ωL<ωA,
the Stokes wave may have spectral components at frequencies higher than ωL and the anti-Stokes
wave may have spectral components at frequencies lower than ωL. If the two backward waves
cannot be distinguished based on frequency, they must be treated as one wave. Therefore, we
adopt the notation EB instead of the usual ES. For consistency, we will use EF instead of EL in
what follows, with the same notation for ρB and ρF (Fig. 2).

Fig. 2. Geometry of the SBS interaction.

2. Optical wave equation

We begin with the nonlinear wave equation in a homogeneous medium, a good approximation for
a well-confined fundamental mode propagating in a step index fiber [10].

∇2Ẽ −
1
ϵ0c2

∂2

∂t2
D̃ =

γe

ρ0c2
∂2

∂t2
ρ̃Ẽ (1)

ρ̃(t, z) is the real propagating density field, Ẽ(t, z) is the electric field, and D̃(t, z) is the displacement
field. The displacement field, D̃, is given by

D̃(t, z) =
∫ ∞

0
ε(τ)Ẽ(t − τ, z)dτ. (2)

All three fields have components propagating in the forward (F) and backward (B) directions.

Ẽ = EFexp(−iω0t + ik0z) + EBexp(−iω0t − ik0z) + c.c. (3)

D̃ = DFexp(−iω0t + ik0z) + DBexp(−iω0t − ik0z) + c.c. (4)

ρ̃ = ρFexp(−iΩt + iqz) + ρBexp(−iΩt − iqz) + c.c. (5)

Here, note that the wavevectors are related by q = 2k0, and c.c. refers to complex conjugate. Ẽ
and D̃ are separated into sinusoidal parts that vary rapidly in z,t and complex amplitudes that
vary relatively slowly. In view of the expectation that the broadband modulation on the optical
wave is transferred to the acoustic wave which has a much lower carrier frequency, we make no
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such approximation concerning ρF and ρB, nor is it necessary, as will be seen later. Following
[15], we keep only two terms in the Taylor expansion of ε(ω).

DF,B = ε(ω0)EF,B + iε′(ω0)
dEF,B

dt
(6)

Here ε′(ω0) = (dε/dω)|ω0 , and we assume that ε is the same for EF and EB as is ε′. Putting
(3)–(6) into (1), we obtain

∂EF

∂t
+ iΩES − vg

∂EF

∂z
=

iω0γe

2n2ρ0
[ρFexp(−iΩt) + ρBexp(iΩt)]EB, and (7)

∂EB

∂t
+ iΩES − vg

∂EB

∂z
=

iω0γe

2n2ρ0
[ρ∗Fexp(iΩt) + ρ∗Bexp(−iΩt)]EF. (8)

3. Acoustic wave equation

The wave equation for the density, ρ̃, has a driving term proportional to the electrostrictive
constant γe [10]. f̂noise is the thermal acoustic noise source that initiates Brillouin amplification.

∂2 ρ̃

∂t2
− Γ′∇2 ∂ρ̃

∂t
− v2

a∇
2 ρ̃ = −

1
2
ϵ0γe∇

2 ⟨︁Ẽ2⟩︁ + f̃noise(z, t) (9)

The electrostrictive constant is

γe = ρ0
∂ε(ρ0, S;ω0)

∂ρ0
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where ρ0 is the equilibrium density, S is the entropy, and T is the temperature. The speed of
sound is given by ν2a = (∂p/∂ρ0)s where the change in pressure with respect to the equilibrium
density is evaluated at constant entropy. The damping coefficient is given by

Γ′ =
1
ρ0

[︃
4
3
ηs + ηb +

κ

Cp
(γ − 1)

]︃
(11)

where the thermodynamic quantities are defined in Ref. 15.
⟨︁
Ẽ2⟩︁ denotes the time average of Ẽ2

over many optical periods.

1
2
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2 + EFE∗

B ei q z + E∗
FEB e−i q z (12)

For convenience, we write
f̃n = fn ei q z + c.c. (13)

We now insert (5), (12), and (13) into (9), and make the usual approximation that q2ρ ≫

q (∂ρ/∂z) and ∂2ρ/∂z2, making the acoustic wave effectively stationary. Because va ≃ 3 ×

10−5(c/n), including the propagation would be computationally insignificant.(︃
∂2

∂t2
+ Γ′q2 ∂

∂t
+ v2

aq2
)︃
(ρF e−iΩ t + ρB eiΩ t) =

ε0 γe q2

2
EFE∗

B e−iΩ t + fn (14)

According to the method of variation of parameters [16], Eq. (14) is completely equivalent to
two first order equations, provided Ω2 − (Γ/2)2 ≈ Ω2. For typical Brillouin frequencies (1010 Hz)
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and linewidths (108 Hz), this approximation is good to 3 parts in 105. Note that no slowly varying
amplitude approximation is needed. Thus, we obtain(︃

∂

∂t
+
Γ

2

)︃
ρF =

ε0 γe q2

2iΩ
EFE∗

B eiΩ t + fF, and (15)(︃
∂
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+
Γ

2

)︃
ρB =

ε0 γe q2

2iΩ
EFE∗

B e−iΩ t + fB. (16)

Here we have also introduced independent noise sources, fF(t, z) and fB(t, z), for the two
directions. Although they are correlated because they both stem from fn, the correlation is of
the order |Γ/2Ω |, therefore negligible. For the computation, we use a random noise source
δ − correlated in (t, z) with a magnitude given in Ref. 17.

4. Gain in the active fiber

Most previous treatments of SBS at kW levels have considered only passive fiber. The case of
practical interest for directed energy is a cladding-pumped active fiber where the laser intensity is
strongly z-dependent, and the backward wave experiences laser gain as well as Brillouin gain. We
model the gain as a two-level system, e.g., Yb ions, i.e., the population densities are constrained
by

NYb = N1 + N2. (17)
The upper-level population density is given by

∂N2
∂ t
=

cnε0
2

(︃
|EP |

2αP

hνP
+

|EF |
2αF

hνL

)︃
− N2W21 (18)

where we assume the backward wave intensity is negligible. The level populations together with
the cross sections for absorption and emission determine the exponential gain or loss coefficient
for the forward and backward waves,

αF = (σaLN1 − σeLN2) ≈ αB (19)

and for the pump wave,
αP = (σaPN1 − σePN2). (20)

The equation for the propagation of the pump laser is therefore,(︃
∂

∂ t
+ vg

∂

∂ z

)︃
EP =

−ηαP

2
EP (21)

where η represents the core to cladding area ratio. We add an analogous term representing gain
at the laser wavelength to the right-hand side of (7) and (8), with η = 1.

The modified Eqs. (7), (8) and Eqs. (15), (16), (21) are discretized and solved with the forward
Euler method on a grid where steps in time and space are related by n∆z = c∆ t. Convergence
occurs in ∼8 transit times. Time averages exclude the first two transits because of transients.
The number of grid points along the fiber is chosen to be a multiple, usually four or eight, of
the product of transit time and bandwidth, where the bandwidth is taken to be 2Ω plus the seed
bandwidth. For purposes of determining the number of grid points, the seed bandwidth is taken
to be the bandwidth that contains 85% of the seed power to treat different spectral shapes on
similar footing. The initial conditions are the steady-state values of EF , EP, N1, and N2, with no
backward optical wave and no acoustic waves. EF, EB, ρF, and ρB are propagated in time. The
pump beam and the inversion retain their original z-dependence throughout the simulation. This
is appropriate for exploring the regime at or below threshold in an amplifier where the Brillouin
gain and the Yb gain are not so high that the backward wave intensity becomes comparable to
that of the forward wave and thus affects the inversion.



Research Article Vol. 32, No. 14 / 1 Jul 2024 / Optics Express 25185

5. Results for a high-power fiber amplifier

The parameters for the simulations that follow are shown in Table 1. The active fiber length is
chosen to yield 95% pump absorption at high power. The other fiber specifications correspond to
a typical commercial large mode area (LMA) fiber. Simulations run for at least six transit times.
Averages exclude the first two transits to avoid the startup transients. The seed power is set at
15 dB below the pump power to avoid numerical instabilities.

Table 1. Parameters used in the simulations.

Fiber core / cladding 25 / 400 µm va 5960 m/s

Active / passive length 6.2 / 2 m Brillouin linewidth 60 MHz

Pump wavelength λP 976 nm Brillouin frequency 16.24 GHz

absorption cross section at λP 2.585× 10−24 m2 κ 8.98× 102

emission cross section at λP 2.585× 10−24 m2 Λe 1.24× 10−8

Laser wavelength λL 1064 nm n 1.45

absorption cross section at λL 5.128× 10−27 m2 γe 1.95

emission cross section at λL 3.023× 10−25 m2

Yb concentration in core 3.420× 1025 m−3 Yb upper state lifetime 1 ms

The first series of amplifier simulations has a seed modulated by a random walk in phase
yielding a Lorentzian spectrum with a 4-GHz Full-Width-Half-Maximum (FWHM). Figure 3
shows the spectrum of EB for pump powers of 56 W, 225 W, and 900 W. The corresponding
seed powers are 1.77 W, 7.12 W, and 28.5 W. Zero frequency corresponds to the laser center
frequency. The amplifier output at threshold is 400 W. We define threshold as occurring when
PB(0)/PF(L) = 10−5, which is a conservative value, comparable to that used in industry. The
expected Stokes peak is accompanied by an anti-Stokes peak, even though the seed FWHM is
only one-fourth of the Brillouin frequency. The existence of an anti-Stokes peak has not been
previously reported.
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Fig. 3. Spectra of EB taken at three different pump powers, for a Lorentzian seed spectrum
of 4 GHz (FWHM). Zero on the x axis corresponds to the laser center frequency. The Stokes
peak is on the left; the anti-Stokes peak is on the right. The output power at threshold is
400 W.

At the lowest power level, the peaks are simply shifted versions of the seed spectrum. The
Stokes peak, shown on the left, grows superlinearly with pump power, indicative of the stimulated
regime. The anti-Stokes peak grows approximately linearly with pump power, indicative of the
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Fig. 4. Spectra of EF and EB taken near threshold for a Lorentzian laser bandwidth ranging
from 1–32 GHz (FWHM).

Fig. 5. Pump and laser threshold vs Lorentzian laser bandwidth.

spontaneous regime. Note that the wings of the Stokes (anti-Stokes) peak extend to frequencies
above (below) the laser center frequency. A flattening or dip in the middle of the anti-Stokes
peak appears near threshold and above. We attribute this to the coupling that causes power flow
back to the laser wavelength described by Eqs. (22)–(27) below.

In the next series of simulations, the seed bandwidth and pump power are varied to find the
SBS threshold. Figure 4 shows the spectra of EF and EB taken near threshold for seed bandwidths
ranging from 1-32 GHz (FWHM). The anti-Stokes peak is clearly visible even at a 1-GHz seed
bandwidth although it is more than two orders of magnitude lower than the Stokes peak. At a
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bandwidth of twice the Stokes shift, the anti-Stokes peak broadens in proportion to the seed
bandwidth and appears as just a shoulder on the Stokes peak.

A plot of threshold pump and laser power vs seed bandwidth shows a linear relationship
(Fig. 5) up to a bandwidth of 32 GHz. Therefore, the inclusion of the second derivative in (9), or,
equivalently, Eq. (16) for ρB, does not change the linear behavior expected from the narrow-band
model.

It is apparent from the figures above that the anti-Stokes wave remains orders of magnitude
lower in intensity than the conventional Stokes wave.

6. Amplitude of the anti-Stokes wave

There are several factors that govern the amplitude of the anti-Stokes wave. One factor is phase
matching, i.e., whether the backward-going phonons generated in Fig. 1(b) have the correct
wavevector (and frequency) for coupling the laser and anti-Stokes waves. The Stokes phonons and
anti-Stokes phonons differ slightly in frequency and wavevector. The phonon frequency difference
is small compared to a 32 GHz laser bandwidth: νanti - Stokes − νStokes ≃ 4nνL(va/c)2 = 0.6 MHz.
However, the phonon wavevector difference, qanti - Stokes − qStokes ≃ 680 m−1, is comparable to the
670 m−1 spread in laser wavevectors associated with a bandwidth of 32 GHz, so phase matching
is relevant.

The main reason why the anti-Stokes wave does not grow is that the power flow is from the
anti-Stokes wave back to the laser wave. This can be seen from the equations that result from
separating EB into two components, which is valid when they do not significantly overlap in
frequency. This separation allows us to compare the growth of both waves in the narrow-band
regime. Instead of (3), we divide the total field into Laser, Stokes, and anti-Stokes components.

Ẽ = ELexp(−iωLt + ikLz) + ESexp(−iωSt − ikSz) + EAexp(−iωAt − ikAz) + c.c. (22)

In the narrow-band, steady-state limit, and neglecting the acoustic noise term, we obtain

dEL

dz
= +κ |EA |

2EL (23)

and
dEA

dz
= +κ |EL |

2EA −
iΩ
vg

EA (24)

in the absence of ρF and ES. The coupling constant is given by

κ =
ω0γ

2
eε0q2

2n2ρ0ΓΩvg
. (25)

Since the waves are counter-propagating, the power flows from EA to EL. In the absence of ρB
and EA, the power flows from EL to ES.

dEL

dz
= −κ |ES |

2EL (26)

dES

dz
= −κ |EL |

2ES +
iΩ
vg

ES (27)

A forward anti-Stokes wave does not grow from noise [10, pg. 441] for the same reason. In
addition to limiting the amplitude of the anti-Stokes wave, we believe the reverse power flow is
responsible for the flattening and dip in the anti-Stokes peak seen in Fig. 3 and Fig. 4.
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7. Influence of a reflection at the fiber end cap

In contrast to the numerical data in Fig. 5, an experimental measurement of SBS in a 1.4 kW
amplifier has shown a sublinear dependence of threshold on seed bandwidth [18]. An explanation
proposed by the authors was that the modulated laser beam had enough spectral power density
16 GHz below the center frequency that a reflection from the fiber exit face could seed the Stokes
wave [19]. Our broadband model easily incorporates Fresnel reflections that occur at splices and
at the exit face, and our results described below agree with this hypothesis.

Several papers have analyzed experimentally and theoretically the effect of such a reflection.
Evidence of seeding the Stokes wave was seen in a study of PRBS phase modulation in a high-
power amplifier which revealed a ∼30% decrease in threshold when the modulation frequency
was carefully tuned so that a harmonic coincided with the Brillouin frequency [20]. High
resolution spectroscopy of the backward wave revealed that it was due to an overlap between
a Fresnel-reflected line in the wings of the laser spectrum and one of the peaks in the Stokes
spectrum.

The influence of reflections has also been treated theoretically for the case of a passive fiber and
pulses with a Gaussian spectrum and FWHM linewidths up to 32 GHz [12-144]. The influence
of reflections on SBS in a fiber amplifier seeded by white noise has been studied experimentally
at the 500 W level. The rms linewidth was varied from 5-10 GHz [21]. Good agreement was
obtained with a steady-state model incorporating a laser wave, backward Stokes wave, Rayleigh
scattering, and ASE.

Our work differs from previous work in one or more of the following ways: (a) the model is
time-dependent and includes acoustic waves traveling in both directions, (b) the model includes
the buildup from distributed noise based on first principles, (c) the model includes a gain and a
passive section of the fiber, (d) the model includes a pump beam and inversion in the gain section,
and (e) we have analyzed more recent phase modulation formats.

To explore this effect with our model, we introduced a reflection coefficient for EF at the fiber
end face. In addition to the Lorentzian laser spectrum, we investigated a Gaussian spectrum
from random phase or frequency modulation, and a flat-top spectrum from triangular frequency
modulation [22]. In addition to seeding the Stokes wave, the Fresnel reflection contributes to
a peak at the laser frequency and at the anti-Stokes frequency (Fig. 6). The latter two peaks
are down by two or more orders of magnitude, so they play only a small role in determining
threshold.

Fig. 6. Spectrum of the backward wave close to threshold for the following conditions:
r= 10−4 and (a) random walk frequency modulation, (b) random frequency modulation,
(c) triangular frequency modulation, all with the same 85% bandwidth of 6.7 GHz. The
threshold output powers are 200 W, 394 W, and 568 W.

The various phase modulation formats clearly yield thresholds with different dependence on
bandwidth and endcap reflectivity. In the case of a Gaussian spectrum due to random frequency
modulation (Fig. 7), the sublinear dependence of threshold on bandwidth is noticeable at r = 10−4

but maintains a monotonic rise even at r = 3 · 10−4. Figure 7 can be compared to Fig. 2(b) in
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Ref. 18. In the case of a spectrum with sharper edges, e.g., that due to triangular frequency
modulation (Fig. 8), the threshold decreases abruptly at 16 GHz where the Stokes and (reflected)
laser spectra begin to overlap, seeding the Stokes wave.

Fig. 7. Results for random frequency modulation. Output power at threshold v (left)
bandwidth, and (right) amplitude reflectivity.

Fig. 8. Results for triangular frequency modulation. Output power at threshold v (left)
bandwidth and (right) amplitude reflectivity.

8. Summary

We have presented a model for SBS in a fiber amplifier with a broadband seed. It predicts the
existence of a backward propagating acoustic wave accompanied by an anti-Stokes optical wave
that has not been previously reported. The anti-Stokes wave remains low in power because its
direct interaction with the laser involves power flow in the wrong direction; therefore, its role in
the amplifier is limited. The broadband model reveals the physics of why the narrow-band model
works well even when the modulation bandwidth is comparable to the Brillouin frequency.

The model is also useful for analyzing cases where Fresnel reflections seed the backward wave.
It lends further evidence to support existing hypotheses for the nonlinear dependence of threshold
on seed bandwidth. The model indicates to what level the reflections have to be reduced, through
anti-reflection coatings and tilted endcaps, to avoid lowering the threshold. And it shows that for
non-zero reflectivities, the threshold can decrease with seed bandwidth in certain regimes.
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